账号:
密码:
最新动态
产业快讯
CTIMES/SmartAuto / 新闻 /
TI 30A闸极驱动器 减少SiC MOSFET功率损耗和热散逸
 

【CTIMES / SMARTAUTO ABC_1 报导】    2022年08月11日 星期四

浏览人次:【2392】

随着电动车(EV)制造商之间为了开发成本更低、续航里程更长的车型所进行的竞争日益激烈,电力系统工程师必须设法藉由降低功率损耗和提高牵引逆变器系统效率,来提升续航里程并增加竞争优势。

EV牵引逆变器原理图
EV牵引逆变器原理图

效率与较低的功率损耗有关,而这会影响热性能、系统重量、尺寸和成本。降低功率损耗的需求将随着开发功率更高的逆变器而持续存在,尤其是在这每辆汽车的马达数量增加以及卡车转向纯电动车发展的现况下。

牵引逆变器长久以来使用绝缘栅双极电晶体(IGBT)。不过,随着半导体技术进步,碳化矽(SiC)金属氧化物半导体场效应电晶体(MOSFET)不仅能够提供比IGBT更高频率的开关能力,还能透过降低电阻和开关损耗来提高效率,同时增加功率和电流密度。

在EV牵引逆变器中驱动SiC MOSFET,尤其对於功率>100 kW和800 V的汇流排,需要具备可靠绝缘技术、高驱动强度以及故障监控和防护功能的绝缘式闸极驱动器。

尤其是对於SiC MOSFET,闸极驱动器IC必须尽可能减少开关和包括开启和关闭能量的传导损耗。MOSFET产品规格表包含闸极电荷特性,在这条曲线上,您会发现称为米勒平台的平坦水平部份。MOSFET在开启和关闭状态之间花费的时间愈长,损耗的功率就愈多。

SiC MOSFET开关时,超过栅源??值(VGSTH)的栅源电压(VGS)因为电荷和电容均为固定的缘故,被箝位在米勒平台电压(Vplt)并停留在其中。由MOSFET进行开关将需要增加或移除足够的闸极电荷。

绝缘式闸极驱动器必须以高电流驱动MOSFET闸极,才能增加或移除闸极电荷,藉以降低功率损耗。方程式1计算绝缘式闸极驱动器将增加或移除的所需SiC MOSFET电荷,显示MOSFET闸极电流与闸极电荷成正比:

QGATE = IGATE × tSW

其中IGATE是绝缘式闸极驱动器IC电流,tSW是MOSFET的开启时间。

对於?150-kW的牵引逆变器应用,绝缘式闸极驱动器应具有>10A的驱动强度,能够以高压摆率透过米勒平台切换SiC FET,并运用较高的开关频率。SiC FET具有较低的反向复原电荷(Qrr)和更稳定的过热导通电阻(RDS(on)),可提高开关速度。MOSFET停留在米勒平台的时间愈短,功率损耗和自我加热就愈低。

TI的UCC5870-Q1和UCC5871-Q1是高电流、符合TI功能安全标准的30A闸极驱动器,其具有基本型或强化型绝缘,以及用於与微控制器进行故障通讯的序列周边设备介面数位汇流排。

UCC5870-Q1闸极驱动器的峰值电流为39A,并透过米勒平台保持30A的电流,藉以实现更快的开启,这是理想的结果。透过比较两个驱动器之间的蓝色VGATE波形斜坡,也可以明显看出更快的开启。在10 V的米勒平台电压下,UCC5870-Q1的闸极驱动器电流为30 A,而竞争装置的闸极驱动器电流为8 A。

闸极驱动器米勒平台比较也与闸极驱动器中的开关损耗有关。在这项比较中,驱动器开关损耗差异高达0.6 W。这些损耗导致逆变器的总功率损耗,并加强对高电流闸极驱动器的需求。

功率损耗会导致温度升高,造成热管理更加复杂,因为需要散热器或更厚的印刷电路板(PCB)铜层。

高驱动强度有助於降低闸极驱动器的外壳温度,因此不需要使用较昂贵的散热器或额外的PCB接地层降低闸极驱动器的IC温度。UCC5870-Q1的运作温度降低15。C,这是由於较低的开关损耗和通过米勒平台的较高驱动电流。

随着EV牵引逆变器的功率增加到150 kW以上,选择透过米勒平台达到最大电流强度的绝缘式闸极驱动器可以降低SiC MOSFET功率损耗并加快开关频率,藉以提高效率,确实改善新的EV模型驱动范围。

符合TI功能安全标准的UCC5870-Q1和UCC5871-Q1 30-A闸极驱动器随附有助於实作的许多设计支援工具。

關鍵字: SiC  TI 
相关新闻
德州仪器扩大氮化??半导体内部制造作业 将自有产能提升至四倍
格棋化合物半导体中坜新厂落成 携手中科院强化高频通讯技术
ASM双腔体碳化矽磊晶平台 满足先进碳化矽功率元件领域需求
TI推出微型DLP显示控制器 可实现4K UHD投影机的大画面投影
贸泽即日起供货TI DLP2021-Q1 DLP数位微镜装置
comments powered by Disqus
相关讨论
  相关文章
» ChipLink工具指南:PCIe® 交换机除错的好帮手
» 创新光科技提升汽车外饰灯照明度
» 以模拟工具提高氢生产燃料电池使用率
» 掌握石墨回收与替代 化解电池断链危机
» SiC MOSFET:意法半导体克服产业挑战的颠覆性技术


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 远播信息股份有限公司版权所有 Powered by O3  v3.20.1.HK8C18YL8D6STACUK4
地址:台北数位产业园区(digiBlock Taipei) 103台北市大同区承德路三段287-2号A栋204室
电话 (02)2585-5526 #0 转接至总机 /  E-Mail: [email protected]