帳號:
密碼:
最新動態
產業快訊
CTIMES / 文章 /
Sklearn2ONNX AI範例分享:風扇堵塞偵測
 

【作者: 意法半導體】   2022年10月27日 星期四

瀏覽人次:【4414】

本文分享沒有AI背景的工程師,在使用NanoEdge AI Studio快速訓練風扇異常偵測的模型的方法。


此模型是依馬達控制板的電流訊號,偵測風扇濾網的堵塞百分比。當風扇堵塞時,馬達的電流訊號波型與一般情況不同,但傳統演算法很難偵測到差異。因此,機器學習演算法便成為解決此問題的絕佳選擇。在訓練模型時,通常會使用scikit-learn函式庫,因此,本文將闡述自行訓練機器學習模型及使用 STM32Cube.AI 部署到相同裝置上的方式,以便使用者比較兩者之間的差異。



圖一
圖一

NanoEdge AI Studio為端對端工具,可預先處理部分資料,再進行訓練與媒合演算法;而STM32Cube.AI則會需要工程師具備完整的AI模型開發經驗。
...
...

使用者別 新聞閱讀限制 文章閱讀限制 出版品優惠
一般訪客 10則/每30天 5/則/每30天 付費下載
VIP會員 無限制 20則/每30天 付費下載
相關文章
SiC MOSFET:意法半導體克服產業挑戰的顛覆性技術
意法半導體的邊緣AI永續發展策略:超越MEMS迎接真正挑戰
Crank Storyboard:跨越微控制器與微處理器的橋樑
嵌入式系統的創新:RTOS與MCU的協同運作
STM32MP25系列MPU加速邊緣AI應用發展 開啟嵌入式智慧新時代
comments powered by Disqus
相關討論
  相關新聞
» 鴻海科亮相台灣太空國際年會 展現低軌衛星實力
» 荷蘭政策專家:科技巨頭正在改變世界的政策與民主
» 感測器+機器人+視訊 運用實時監控助農民精準播種
» 工研院攜手產業 推動電動物流車應用
» 麗臺攜手雙和醫院於2024醫療科技展揭3大展出亮點


刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 遠播資訊股份有限公司版權所有 Powered by O3  v3.20.1.HK8C1830XU6STACUKI
地址:台北數位產業園區(digiBlock Taipei) 103台北市大同區承德路三段287-2號A棟204室
電話 (02)2585-5526 #0 轉接至總機 /  E-Mail: [email protected]