账号:
密码:
最新动态
产业快讯
CTIMES/SmartAuto / 新闻 /
Arm:大规模运算将成为行动运算开发人员最大挑战
 

【CTIMES / SMARTAUTO ABC_1 报导】    2019年12月31日 星期二

浏览人次:【5934】

近年来,机器学习(ML)技术,尤其是机器学习的神经网络子集,几??已经迅速入侵了行动设备硬体和应用软体的所有层面。许多常用且广泛使用的手机应用程序都在後台运行ML技术,以针对特定用法和行为对设备进行微调。当手机的电源管理系统自动微调性能设置以延长电池寿命时,这就是机器学习的一个例子。当行动设备助理装置追踪正常的行车状况,并发送有关火车或下班回家路上交通异常延误的警示时,这也是机器学习的一种形式。而且,如果社交网路应用程序使用你朋友的名字来标记你所上传的照片,那麽这也是正在运作中的机器学习的最好例证。

Arm机器学习市场行销??总裁Steve Roddy
Arm机器学习市场行销??总裁Steve Roddy

Arm机器学习市场行销??总裁Steve Roddy指出,上面所提到的范例,都是下载到手机并在CPU或GPU上运行的软体APP应用程序。深度嵌入功能还与行动设备的硬体紧密相关,例如,高性能的神经网路功能可以改善行动设备中的相机视频和静态影像捕获品质。当行动设备连接到无线网路或蜂巢式网路时,高级WiFi和5G调变解调器将采用与机器紧密耦合的自适应机器学习演算法,并最大程度地提高数据传输速率。

Steve Roddy说,在所有这些机器学习的案例中,技术上最具挑战性的是照片与视频的强化功能,通常称为运算摄影。拍摄10秒钟视频或自拍照的消费者,希??在非常高分辨率的感测器上,以每秒60帧的速度执行具有智能对焦和曝光的稳定流畅视频撷取;加上透过语音来启动的命令处理功能,以设置功能并启动或停止视频撷取(自然语言处理)。

在即时视频上同时运行所有这些功能,将会消耗大量的系统运算处理能力。在今年所宣布用於高阶行动领域的最新行动设备,多数都采用了Arm架构处理器来提供具多核运算效能的15~20 TeraOp/Sec神经处理单元(NPU),可以满足这些应用范例中的高运算要求。我们可以预期,在2020年甚至2021年将超过这些运算的水准,以节能和数据频宽高效的方式来提供大量运算,将成为目前行动运算晶片开发人员所面临的最大挑战。

關鍵字: Arm 
相关新闻
松下汽车系统与Arm合作标准化软体定义车辆 加快开发周期
Arm Tech Symposia 2024於台北展开 推动建构运算未来的人工智慧革命
Arm透过PyTorch和ExecuTorch整合 加速云到边缘端的人工智慧发展
Arm:真正使Arm与众不同的 是软体生态系
Arm:因应AI永无止尽的能源需求 推动AI资料中心工作负载
相关讨论
  相关文章
» 利用CPU和SVE2加速视讯解码和影像处理
» SiC MOSFET:意法半导体克服产业挑战的颠覆性技术
» STM32MP25系列MPU加速边缘AI应用发展 开启嵌入式智慧新时代
» STM32 MCU产品线再添新成员 STM32H7R/S与STM32U0各擅胜场
» STM32WBA系列推动物联网发展 多协定无线连接成效率关键


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2025 远播信息股份有限公司版权所有 Powered by O3  v3.20.1.HK91L4CK30QSTACUKI
地址:台北数位产业园区(digiBlock Taipei) 103台北市大同区承德路三段287-2号A栋204室
电话 (02)2585-5526 #0 转接至总机 /  E-Mail: [email protected]