帳號:
密碼:
最新動態
產業快訊
CTIMES / 文章 /
工程師必須關心的2020年AI/工業4.0關鍵趨勢
 

【作者: Jos Martin】   2020年03月27日 星期五

瀏覽人次:【11538】

科學家和工程師能藉由專業領域知識在AI專案取得某種程度的成果;然而,若利用如自動標記等工具來快速地處理龐大、高品質的資料集,將是進一步成功的關鍵。


隨著取得了現有深度學習模型與研究並加以持續改進,科學家與工程師得以在人工智慧(AI)專案得到更大範圍的成果。傳統上,AI模型大多數以影像為基礎,不過接下來這一年,AI模型將涵蓋更多樣化的資料類型結合,從感測器到時間序列,再到文字和雷達資料等等。



圖1 : 傳統上,AI模型大多數以影像為基礎,未來AI模型將涵蓋更多樣化的資料類型結合。
圖1 : 傳統上,AI模型大多數以影像為基礎,未來AI模型將涵蓋更多樣化的資料類型結合。

科學家和工程師固然可藉由自身具備的專業領域知識在AI專案取得某種程度的成果;然而,若還可以利用某些工具如自動標記等來快速地處理龐大、高品質的資料集,將是進一步成功的關鍵。資料品質愈高、資料量愈大,愈能增加AI模型的精確性,成功機會也愈大。
...
...

使用者別 新聞閱讀限制 文章閱讀限制 出版品優惠
一般使用者 10則/每30天 0則/每30天 付費下載
VIP會員 無限制 25則/每30天 付費下載

相關文章
從邊緣推理到異構運算 看AI的全方位進化
利用邊緣運算節約能源和提升永續性
邊緣運算伺服器全方位應用場景
工業轉型、雲端與邊緣運算
以強固、可靠為本 德承打造工業嵌入式運算方案最佳品牌
相關討論
  相關新聞
» 產學合作推動數位健康落地 海大、北醫大與陽明海運三方攜手
» 台達在 ELECRAMA 2025電子展首推新型協作機器人
» 資策會與富士通攜手推動碳數據共享提升產業綠色競爭力
» 可成跨域航太金屬精密加工產業
» TMBA促工具機生態系平台落地 加速AI賦能產業升級


刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2025 遠播資訊股份有限公司版權所有 Powered by O3  v3.20.1.HK92QCXTKDISTACUKI
地址:台北數位產業園區(digiBlock Taipei) 103台北市大同區承德路三段287-2號A棟204室
電話 (02)2585-5526 #0 轉接至總機 /  E-Mail: [email protected]