帳號:
密碼:
最新動態
產業快訊
CTIMES / 文章 /
整合AI更具智慧 全新型態物聯網形成
 

【作者: 王明德】   2018年05月08日 星期二

瀏覽人次:【7288】

物聯網發展已接近10年,雖然一直未如業界和研究單位預期出現爆發性成長,不過整體趨勢仍然相當明顯,廠商也不斷推出新產品,2016年底AI成為IT產業的另一焦點,各界都認為AI將成為物聯網最後一塊拼圖,由於這一波AI的主流演算法以深度學習(Deep Learning)為主,透過不斷的錯誤更正自我學習,讓指令不斷趨近於完美,這種模式需要大量的運算,因此可與物聯網綿密整合,成為未來各行業的核心運作架構。


邊緣運算強化系統效能

現在物聯網主要為集中式運算架構,也就是第1層所擷取的數據全部往上傳,最上層的雲端平台負責儲存與分析,集中式運算與分散式運算各有優缺點,應用也不盡相同,集中式運算會有即時性、處理器工作負擔和傳輸費用等問題,例如在製造業,設備一旦故障,若仍採用訊息傳回後端再下指令的模式,現場狀況極有可能因為訊息傳遞與後端運算所需的時間而惡化,另外在零售業也會有同樣問題,現在已有IT廠商嘗試將智慧臉孔分析導入至零售業系統,透過人臉分析與CRM的整合,提供更精準且更快速的服務,而臉孔辨識若還需要透過後端伺服器的運算比對,其效益會大幅降低。


另外則是後端處理系統的運算負擔與傳輸費用,未來物聯網的願景是萬物聯網,若所有訊息都連接到後端的運算平台,則伺服器的運算能力必須非常強大,再加上所有第1線設備的連網需求,無論是建置或運作成本都會相當高昂,因此在部分應用中,邊緣運算會是較佳選擇。


不過邊緣運算也並非全無缺點,例如若系統若應用於類似車體中的狹小空間,多點部位同時運算,將會產生干擾,此外經過端點預處理過的數據,也會有失真之虞,當然物聯網的建構並非只能二擇一的極端做法,多數的系統都是兩者並行,在即時性需求較高的部分設計有邊緣運算功能,其他部分則仍為集中式運算。


對台灣來說,集中式運算向來不是台灣廠商可觸及的商機,台灣廠商過去在IT領域主要以消費性產品為主,物聯網興起後,多數廠商也將目光聚焦在第一層的設備端,而邊緣運算概念的出現,完全符合了台灣廠商的產品策略與市場條件,首先是運算晶片,過去物聯網終端產品的元件,多被要求低功耗與小體積,讓設備可以在最有限的空間下,盡可能的長時間運作,而由於多只是簡單的狀態數據擷取,因此運算功能不需強大,但在邊緣運算概念中,部分設備需要有一定的運算能力,這對多數Fabless或IC設計業者來說,都在能力範圍之內,而台灣廠商的優勢則在於,未來的物聯網系統多會是垂直產業所應用,例如製造、醫療、交通…等,這些產業的物聯網系統都需要與其專業結合,其中位於現場第1線的設備更是如此,而不同類型的設備需要對應不同模式的運算晶片,台灣廠商特色是快速彈性的客製化設計能力,在這種少量多樣的需求中,其優勢將會延續,不過這類型應用也容易被抄襲,因此台灣廠商必須先行取得起特定應用領域的專利,方能順利站穩市場。



圖1 : 無論是建置或運作成本都會相當高昂,因此在部分應用中,邊緣運算會是較佳選擇。(Source:CIO East Africa)
圖1 : 無論是建置或運作成本都會相當高昂,因此在部分應用中,邊緣運算會是較佳選擇。(Source:CIO East Africa)

啟動AI政策 台灣開始布局

至於台灣的劣勢則是AI產業化的不足,其實台灣過去在AI領域所培養的人才並不算少,去年回台成立台灣AI實驗的的杜奕瑾就曾指出,他在微軟任職期間,微軟每年舉辦的開發者大會「Build」中,台灣隊總是缺乏政府的奧援,但即便如此,台灣隊伍每年總能拿下不俗的成績,這說明台灣的軟體人才其實不遜於其他國家,只是過去一直不被政府與產業重視。


不過從2017年開始,科技部已開始啟動AI政策,希望透過AI產業化留住台灣軟體人才,而有了軟體人才,台灣的AIoT在軟硬體才能齊備,順利啟動,以前面提到的邊緣運算晶片為例,要在小體積與低耗電的條件下,設計出足夠運算能力的晶片,除了硬體技術外,演算法也是重要一環,軟體工程師必須將龐大的演算模型精簡化,讓終端可以低功耗模式下進行運算。


AI與物聯網的整合雖未開始,不過就整體趨勢已經確定,去年6月阿里巴巴創辦人馬雲就指出,現在產業已經從「互聯網+」進展到「AI+」,也就是AI將與各種領域結合,創造出更多加值服務,而這也就是過去物=連網所訴求的垂直應用模式,不過多位業界人士表示,這不代表AI未來會全面取代人類,台灣微軟總經理孫基康在日前微軟的AI活動上就指出,AI必須要和HI(Human Intelligence)結合,才會變成SI(Super Intelligence)。


AI+HI將是最佳方式

AIoT現在的發展,都是為了提供使用者更直覺、智慧、多元的選擇,但無法做出具有邏輯性的判斷,真要提出相關對應策略,還是需要倚靠人類智慧,以製造業和醫療業為例,工業物聯網現在與AI的結合,已進展到感知層面,也就是脫離冷冰冰的人工指令,而改採更具人性的直覺性訊息,例如當現場製造設備出現故障,系統會依據過去深度學習的結果,判斷出問題所在,再依情況直接告訴作業人員設備故障處與可能故障原因,人員可參考系統將系統建議結合本身專業決定處理方式,而若系統察覺到的問題經過判斷必須即時處理,則會先以口語化語音立即指出故障處與緊急處理方式,讓工作人員可在最短時間內解除狀況,醫療部分則是以AI判讀醫療數據或影像,但是真正的病理判斷與醫療行為,還是需要透過專業的醫師,這也就是AI與HI結合的方式。



圖2 : 科技部部長陳良基宣布啟動台灣AI政策,希望透過AI產業化留住台灣軟體人才(Source:科技部)
圖2 : 科技部部長陳良基宣布啟動台灣AI政策,希望透過AI產業化留住台灣軟體人才(Source:科技部)

在與AI整合後,物聯網會加快其應用拓展速度,就產業架構來看,台灣廠商過去在消費性產品所建立的優勢,將會延伸到物聯網系統中的終端零組件與連網設備,不過這類型產品將會需要一定程度的客製化設計,對台灣廠商來說,這是挑戰也是新契機,台廠可投入更多資源掌握特定領域的專業知識,以站穩未來市場。


刊頭(Source:Adoriasoft)


相關文章
落實馬達節能維運服務
食品包裝機導入AIoT應用
科技改變世界 AIoT翻轉農漁業
智慧照護趨於聯網應用 安全防護樂齡到老
MCU新勢力崛起 驅動AIoT未來關鍵
comments powered by Disqus
相關討論
  相關新聞
» 台達名列台灣前十大國際品牌 連14年入選台灣最佳國際品牌 品牌價值年增9%創新高
» Rambus與美光延長專利授權協議 強化記憶體技術力
» 貿澤電子即日起供貨:適合工業和智慧家庭應用的 Panasonic Industrial Devices Wi-Fi 6雙頻無線模組
» 南韓短命戒嚴聚焦台韓供應鏈 期待轉單莫見樹不見林
» 生成式AI帶來風險 單一整合平台將成為主流


刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 遠播資訊股份有限公司版權所有 Powered by O3  v3.20.2048.172.69.6.170
地址:台北數位產業園區(digiBlock Taipei) 103台北市大同區承德路三段287-2號A棟204室
電話 (02)2585-5526 #0 轉接至總機 /  E-Mail: [email protected]